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of the form (9) are stable with respect to the slow variable k during a time T= O(e-2). 
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ON THE ASYMPTOTIC STABILITY AND INSTABILITY OF THE 
A NAN-AUTONOMOUS SYSTEM* 

ZEROTH SOLUTION OF 

A.S. ANDPEEV 

A non-autonomous set of differential equations with right side satisfying 
conditions for the existence of limit sets of differential equations /l, 2/ 
is considered. Theorems are proved on the limit behaviour of the solutions, 
on the asymptotic stability and instability of the zeroth solution of such 
a set in the presence of a Liapunov function with a derivative of constant 
sign. On the basis of these theorems, sufficient conditions are obtained 
for the asymptotic stability and instability of the zeroth equilibrium 
position of a non-autonomous mechanical system. A problem is solved on 
the asymptotic stabilization of a given three-axis orientation in space 
for a solid with variable moments of inertia. 

1. Consider the following set of differential equations 

2‘ = x (t, 3) (X (t. 0) ms 0) (1.1) 

where x and X are real n-vectors, the function X(&x) is defined in the domain R+ X r(R+= 

ro, f Qi) [, r * ( II s II < He + =)r II = II is a certain norm in a") and satisfies conditions (A) 

from /l/: X(t, z) is measurable in t for fixed x, and is continuous in x for fixed t; for 
any compact set PICr two local La-functions k,(t) and &(t)exist such #at for any s,y Erl 

the function hi(t) is uniformly continuous in the mean on any segement [r, z f 11~: R+, and the 
function b(t) is bounded in the norm on [t,r + 11, i.e. 

for any measurable set Ec]z, z + I] by a measure less than p=p((e, r,)>O, and a certain 
number p = p (r,). 

As is shown in /l/, conditions (A) guarantee the existence of 5OhtiOns of (l.l), in the 
Caratheodory sense, and their uniqueness, the compactness (in weak &-topology) of the family 

of functions {X(t, z)}, satisfying these conditions, p articularly the existence of limit func- 

tions tp (t, t) to X (t, 2), the mutual continuity of the solutions of the initial system (l.l), 
and the.iolutions of the limit systems 

i = m (t, x) (1.2) 

We note that a special case of conditions (A) is Lipschitz conditions in t and x, which 
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is convenient in that for these conditions the limit equations (1.2) retain the structure of 
the initial equations (1.1) /2/. 

We call the function /3/ 

V (t, s)= ji% sup (V (t + h, 5 -I- hX (6 z)) - y f& 2))lh 

the derivative of the scalar function V(t, x) that satisfies locally the Lipschitz condition 

in x from I' uniformly in tER+. 
We will assume that the scalar non-negative functionW(t, @satisfies the Lipschitz condi- 

tion in t and x on each compact [t,, t, -I- Y] X rz(to) 0, Y>O, rlcr), The set of functions 
o(t, z) limiting to W(t, z) will be non-empty, and the convergence of W,(t, z)=W(t,, + t, z) 
to o(t,x) as &++m will be uniform in each compact mentioned. 

We will say that (cp, of is the limit pair of functions if cp f&z) and ~(t,z) are limit 
functions, respectively, of X(t, 5) and W(t,z) for the identical sequence tn+ +a. 

2. Let Q+ (s (t, t,, a$)) denote the set of limit points of a non-continuable function 
x=5(& t,, x0) of system (1.1). 

Theorem 2.1. We assume that a function V(t, z)> 0 exists whose derivative is perman- 
ently negative because of (1.11, t-(t, x)< -W(t, z)<O. For each limit pair (m, o) we let 

M+((cp, 0)) be the set formed by non-continuable solutions of the system x'= m(t,z) lying in 

the set {aft, x)=0, tER’+, ZEI’) in its whole interval of definition, and M*+ (ffcp, of)) is 

the union of M+((cp, 0)) over all (cp, 0). Then for any soLutions=x(t, t,, z&of (l.l), defined 
in the interval [t,+m[, the set of its limit points satisfies the relation Q+nrcl 

M,* (((m, a))). 

Proof. If II s(G to, %I) II -+-k 00 or a+Cai', then the assertion is evident. 
Suppose we have Q+ n I'+ @ and rc* E 8+ n I' for the solution x=x(t, ter z,,) so that 

a sequence t,,+ + on exists such that z(t,,, t,, zO)+xO*. The function V (t) = V (f, z (f, t,, x0)) 
has a lowes bound and decreases. Consequently, V(t)-+c as t++oQ. I?e select a subsequence 

{%I from the sequence (t,,) so that Xk (t. z)= X (fk + f, 4 + cp,, (t. z), Wx (t, x) = W(t, + t, z)+ 

00 0, 4. On the basis of /l/, the sequence zk(t)= z&-l-t, to, 5J will converge to cp 0)x 
(il,(O)=rt,*) the solution of the system x'=gr,(t,z), uniformly in each interval [O, a]~:[& fi[, 
where [0, @[ is the interval of definition of q(t). From the estimate 

by passing to the limit as 
to a0 (t, z), we obtain 

tk+ + 00 and taking account of the uniform convergence of W,(t,z) 

c-c+~@o(r,o(rMdr<o (2.2) 
0 

Hence o,, (t, I# (9) ss 0 for all tE[O, fi [. Therefore, so* E M+((cp,, we)), on the basis of 
which we conclude that @(s (t, t,, sO))C M,+(((tp, a)}). 

Remark. Under the conditions of Theorem 2.1 for the non-continuable solution of (1.1) 
defined in the interval IQ,Qffti<+c~) the set of its limit points &+nlY is contained in a 
subset, invariant to system (l.l), 

Therefore, 
of the set (W(t,z)~O,t~~~~~~),i.e., n+nrcM+((x,m). 

for any non-continuable solution of (1.1) the relationship 
M,+ LJ M+((X, F)7) is satisfied. 

p+ (t (:, :., at)) n r c 

*Theorem 2.2. 
by the domain 

Under the conditions of Theorem 2.1 each solution of system (1.1) bounded 
r,= {II xl<H,<H) approaches unboundedly to the connected compact subset of 

the set M*+ (((rp, 4)). 
The proof follows from the fact that the set of limit points of such a solution, is con- 

netted, compact /3/, and contained in M*'(((IP, 0))) on the basis of Theorem 2.1. 
The theorems proved develop andextend the appropriate results in /4--8/,described in 

part in /3/.; 

3. Theorem 3.1. \?e assume. that: 
whose derivative r (G 2) < 

11 a positive-definite function Vft, Z)) V,(//ri) exists 
-W(t, z)<O by virtue of (1.1); 2) for any limit pair (cp, o) , 

the set {@(t, z)=O} does not contain solutions of the system x'=m(t, z) except m=O. Then 
the zeroth solution Of (1.1) is asymptotically stable with domain of attraction r(t) such that 

sup (v(k 3) for ZEr (f))< VI (iYJ (II,<H). 
Proof. It follows from condi.tion 1) of the theorem that x=0 is stable and the solu- 

tions m=s(t, to, Z,),zo EI‘ ft,) of (1:1) are bounded by the domain (13: I< ET}. 
Repeating the reasoning for Theorem2.1,we findthatforany solution ZPIEs(t, tO,tO), sO=r(t,) 
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the set of its limit points Q+(r(t, ta, r,))is contained in the set P*'({(Q,o))), the union in 
all pairs (Q, a)) of the subsets p+ ((Q, Q))C {a,@, z)= 0}, invariant relative to solutions of 
the system x'= ~(t, s). But from condition 21 of the theorem P((Q,Q)) z (z= 0}, therefore, 

P*+(((Cp, 0))) s (Z= 0). This means SF (z (t, to, ZJ)li (z I 0}, i.e., lim x (t, t,, 2.J = 0 as t-t + m. 

Theorem 3.2. We assume that: 1) a positive-definite function V(t, z) exists that allows 
infinitesimally high limits v,([ z/j)< v(t, z)< v,([ z[), whose derivative V(t, r)< - W(t, 
z)<O; 2) at least one limit pair (Qa, Q,), exists such that the set {a0 (t, z)-0) does not 

contain solutions of the system x'- ~~(t, x) except S-0. 
Then the Seroth Solution of (1.1) is uniformly asymptotically stable in x,with domain of 

attraction f,== {a 21-S He== V;l (V,(lQ), B,cE}. 

The proof of this theorem is a modification of the proof of Theorem 2.1 from /2/. 

Theorem 3.3. We assume that: 1) a positive-definite function V(t,z) exists that satis- 
fies the Lipschitz conditions in (t,z) (and therefore, allowing infinitesimal high limits) 

vr tu r 10 6 YfG 4 < v* (il 3 II) (3.1) 

whose derivative t'(t,a$< - W&z)<0 by virtue of (1.1); 2) for any limit pair of functions 

zzo*' th e set (o (t, x)=0} does not contain solutions of the system i = Q (t, 5) except 
. Then the zeroth solution of (1.1) is uniformly asymptotically stable with domain of 

attraction r. - (12 If <A, = V,l (V, (X1))). 

ProOf. It follows from condition 1) of the theorem that the zero+& solution of (1.1) is 
uniformly stable and solutions of Cl.11 from r,, are bounded by the domain rr = {Ilsll<~~). 

We will show that X= 0 is a point of attraction of all the solutions of any limit system 
from the domain I',,. 

Let +-q(t) (lp(f,) =qE r,) be the solution of the limit system i = cpa(t+s), By the 
definition of ~,,(t,z), a sequence &,-c-1_ a~ exists such that X,,(t,z)= X(t,, -k t, I) -+Q@(t,s). 
We select a subseqsxma tk ++ do, such that the subsequences V,(t, a~)= V(t, + t,z) and Wk(t, 

t) = W(t, + t,z) converge uniformly on each compact It,, to + VI x {II slf < ff,, H* > 611) to ho (t. 4 

and o*(t, z) respectively. By virtue of 13 .l), we have 

VI (II tlf) < 10 (G 4 G v, ar =I11 13.2) 

Consider the sequence of solutions I = Sk(t)(t> to) of the systems of equations 5' = 
Xk(t, z) that satisfy the initial conditions zk(to)=s,; From the convergence X,(t,x)+q~,(t, 
2) and the condition Sk (t,)=so we have that the z*(t) will converge uniformly in eachinterval 

it,, ts -I- VI to 9 (t). The functions q(t) will simultaneously be solutions of the initialsystem 
(1.1) with the initial conditions z (tk f f) = z,,. Consequently, from condition 1) for t> t, 
we have the estimate 

Vk P7 =k (0) - VI, (tO, xO) 6 - $ w, (T, % (7)) dr 
0 

from which, passing to the limit as t, +-f m, we have 

Hence, also from (3.2) we conclude that the zeroth solution of the system 5' = (PiI (6 4 
is stable and its solutions from r. are limited to the domain rl. The system of equations 

limiting to z'= Qo(t,x) will be the limit also to (1.1) in the same way as functions that 
are the limit to oo(t, z) will be the limit to W(t,z) also. Hence, according to condition 

2) of the theorem, if (Ql, 0%) is the limit pair to (Qo. oo), then the set (@I(& z) = 0)doesnot 
containsolutionsofthesyStemi = QI (t,,xfexceptct = 0. Onthebasis ofTheorem3.lweconc~ude t&at 

tbezeroti SOlUtiOnOftheSyStemz' = Qa(t,zfis asymptotfcallystablewitbdomain of attraction ra. 
The uniform stability of the zerath solution of (1.1) and the fact that f, is the domain 

of attraction of the point z 3 0 of solutions of any limit system (1.2) imply the uniform 
asymptotic stability of the zeroth solution of (1.1) with the domain of attraction r0 /8/. 

Theorem 3.4. We assume that: 1) a function V(t,x) exists that allows infinitesimal high 

limits and takes positive values for a certain f -9 t);bO in any small neighbourhood 5 = 0, 

whose derivative P(t,z)> W(t,r))O by virtue of (1.1); 2) a limit pair of functions fQ0, 00) 

exists such that the set {Q~(t,z) = 0) contains no solutions of the system 2' = Q~ (t, 2) except 

z = 0. Then the zeroth solution of (1.1) is unstable. 
For any arbitrary sequence t,,++ 00 and a number c we denote by N(t,c) the set of 

points x of the domain r for each of which a subsequence rk ++ co exists such that lim V(tk 4 

t, 2) = c as tt4+00. 
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Theorem 3.5. We assume that: 1) a function V(t,z) exists which takes positive values 

for a certain t = to>0 in any small neighbourhood of 5=0, which is bounded in the domain 

V (t, z)> 0, whose derivative irft, z)> I%'(& z)> 0 by virtue of (1.11 : 2) a sequence tn ++ 

03 exists for which the limit set i$'(t,c) and the limit pair (cpc* we) are such that for any 
c> 0 the set N(t, e) n {Oo(t, 2) = 0) contains no solutions of the system z* = fp,,(t, 2). Then 
the zeroth solution of (1.1) is unstable. 

The proofs of Theorems 3.4 and 3.5 are modifications of the proofs of Theorems 3.2 and 
3.3. 

Remark. The conditions imposed on the right side, X&r), of (1.1) can be weakened to 
conditions for the existence of limit systems of integral equations to (1.1) /9/. Conditions 
on the function EFft.z) can be weakened in an analogous way. 

Theorem 3.1 - 3.5 generalize the theorems on asymptotic stability and instability: for 
non-autonomous systems with sign-definite derivative; autonomous systems and non-autonomous 
systems with periodic right side in the presence of Liapunov functions with sign-constant 
derivative /lo-13/. It can be show that the conditions of theorems on the asymptotic stabil- 
ity and instability with two Liapunov functions /14, IS/ with respect to the auxiliary 
Liapunov function are sufficient for compliance with condition 2) of Theorems 3.1-3.5. 

Exam@ e . Consider the motion of a solid of variable mass having a fixed point and kinetic 
symmetry when conserving the principal directions, in a homogeneous gravity field under the 
effect of resistive forces of the medium 

Ap' + (C -A) qr = m@y, -UP -I- -Kc, b’ = ‘YI - ‘Iy.7 (3.3) 

&' + (A - C) ~7 s -mt!% - h + My, 71’ = PA - ?‘i 
CT’ = M,, Ys’ = Pyl - PYS 

We assume that the components of the moments of the reactive forcesM,and &fe are zero, 
the resultant moment MZ defines r as a bounded function of time r=r(frter& the moments of 
inertia A (t) and C(t), the body mass m(t)and its coordinates = (0, the coefficients of the 
moments of the resistive forces cr(t) and b(t) , are bounded and satisfy the conditions 

Then the equations 

symmetry 

For the derivative 

we have Y<-W(p, qf~-Z~,(p~+q~))O by virtue of (3.3). 
The equations that are limiting to the first two equations (3.3), solved for p and g 

exist and have the form 

A (6 2 A, > 0, C (t) > CO > 0, m (t) >, ma > 0 (3.4) 
z(t) B% < 0, ~1 (t) = (20 -A') mgz + A (ngz)‘< --p@ 

14 (t) = I= - AYmgg+A (VI’<-_~to<o 

of motion allow non-uniform rotation around the vertical axis of 

p=q=o, 7 = r 0, to, rd, Yl = y* = 0, ys = 1 

of the function 

(3.5) 

P’ = 111 (t) clr + b (t) oa + 5 (0 P 
q’ = -& (t) p’ - ha (t) YI f b (0 q (n, (:) < -ho < 0) 

We find from these equations that the solution of the limit equations to (3.31, that lie 
in the set {W @, qf - 0) f (p = p - 0) are only the solutions p = q = 0, yl 9~ A = 0, ys = i. Hence, on 
the basis of Theorem 3.3., we conclude that under conditions (3.4) the motion (3.5) isuniformlv 
asymptotically stable in p, 9, y,, yIq ya. It can be shown that for ~(t);Zr,> 0, k (t)>‘po, p*(t)& po> 0 
the motion (3.5) will be unstable on the basis of Theorem 3.4. 

We note that an analogous problem for a body of constant mass was solved in /14/ by 
using two Liapunov functions, different problems on the stability of rotation of a variable- 
mass body were'first 

4. We consider 
Lagrange equations 

examined in ,051. 

a mechanical system with time-dependent constraints described by the 

-&(+)-d&-Q 

f = (Pl. 99.9 . . ,I (In), L = Lz + Ll + Lo 

L* = ‘/a (q’jT-4 ct. q) q’, Ll = BT (q) q’, La = L*(& q) 

(4.1) 

Q =Q(t; q, q’) is the resultant of the generalized gyroscopic and dissipative forces, Q’J’.q’< 
0; aLiaq s 0, Q I 0 for 6 = q = 0 so that the system has a zeroth equilibrium position 

q”q=O (4.2) 
We assume L, (t, 0)~ O,aLiat> 0, which is satisfied if for fixed q'and q the systemkinetic 

energy is a non-decreasing, and the potential energy a non-increasing function of t. Then for 
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the derivative of the function Ls -LO we have 

(Ls - Lpy = - aLi13t + Q=.q’ < QT.q’ (4.3) 

We also assume that the quantities A (t, qf, $ABT, aA/aq, c%/8q, i%WPq, Q are boun&d and 
satisfy the Lipschits condition in all. their variables. Then the limit systems of equations 
to (4.1) exist and have the form 

A%+ {(q')TC,dI + #$I + F, -Q,, (4.4) 

where {($)Tc,$), &') are sets of n quadratic and n linear forms, respectively, the elements 

of the matrices A,, {Cl}, (De}, F,, Q* are limiting for corresponding elements from (4-l), in 
particular 

F*(Gq)= l'E_ $$-ct, + t,q) ( 4 . 5.) 
n 

Theorem 4.1. We assume that L,(t, q)< 0, the dissipative forces are partial dissipa- 

tion forces, QT.q*=G - a (fl q*k.fx (a (a}>0 for e f 0, tiqtfk is the norm in Rk in the first k 

coordinates). Theneachboundedmotion (4.1) approachesthe connectedsubsetof the set M,+C 
(q< = qI’ = . . . = qk -0) invariantlywithrespecttothesolutionofthe Umitsystems (4.4). If 
thedissipative forcesareforcesoftotaldissipation QT.q’< - cx(IIqJ1), theneachboundedmotion 
(4.1) approaches theconnected subsetofthe sets ofequilibriumpositionsofallsystems (4.4) with- 
outlimit,i.e., thesetsofpoints q defined by the equalities 

$r+(&ft,9)"0 (O<t<+w) 

OnthebasisofTheorem2.2 theproofs followfromrelations (4,3), thestructureofthe limits 
systems (4.4) to (4.1) and equations (4.5). 

Theorem 4.2. We assume that: 1) the function V = - L,(t, q) is positive-definite; 2) 
the equilibrium position (4.2) is a non-degenerate isolated position, i.e ., IIaL,!aqII>fo(1iq’11) 
(fa(a)= O++U = 0); 3) dissipative forces are forces of total dissipation QT.q*< -_a(IIq’If). 

Then the equilibrium position (4.2) is uniformly asymptotically stable. 

Proof. Because of the boundedness of A(t,q~,~L~~ and condition 1) of the theorem, the 
function Lp -LO is positive-definite, allows of infinitesimal high limits in q'and 4, and 
by virtue of (4.3) there will be (4 -L,)‘< - a (11 q’[[)< 0. 

From the structure of the limit system (4.4) we have that its every solution lying in 

the set (a(11 $11) = 0) zz (6’ = q2’= . . . = q,,’ = 0) is the solution Q = Const, defined by the 
equalities P,(f q)i 0. But it follows from (4.5) and condition 2) of the theorem that 

F, & q) -_=OHqsO, i.e., that solution can only be zero. We have the result required on the 
basis of Theorem 3.3. 

The following result can be obtained by a modification of the proof executed on the basis 
of Theorems 3.3. and 3.2. 

Theorem 4.3. Under conditions 1) and 2) of the previous theorem let us also have 3) 

QT.q’ Q - B (8) a QI d If) Q 0, where B 0) > 0, 8 (t) > PO > 0 for 
sequence 

t E k 4, f 4 for ;h;r;;i;I is 
t,,++ 00 such that &,+r--t,<p = eonst, and a certain number v> 0. 

uniformly asymptotically stable. If @ (t)>O. fi (t) >&> 0 for t E [&, t, + vl for a certain 
divergent sequence .&d-i- 00 (i.e., the condition &,+I -t,,< p is not satisfied) and V> 0, 
then (4.2) is uniformly asymptotically stable in (90, go'). 

We note that this result cannot be obtained on the basis of theorems from /2/. 

Theorem 4.4. We assume that: 1) the function Lo(t, q) h as no maximum at the point q = 0 
for a certain t = t, 20; 2) the equilibrium position q -0 is a non-degenerate isolated 

position, i.e., II~W~gll>~fo Qf4ll)>O Vc(d=O++a =O); 3) the dissipative forces are such 

that QT.q*<-@f(t) uulq’il)~~~t~~O, @(t)>k>O; for tEk, k-i-vf, t,-tfa, v>O). 
Then the equilibrium position (4.2) iS Unstable. 

Theorem 4.5. we assume that: 1) the function L@(t,q) has no maximum at the Point Q" 0 

for a certain t = to>;+ 2) a sequence t,,-+ CO and a number v>O exist for which for 

any number s> 0 a 8 ict a(e)>0 exists such that for all tE[&,t,,fvj in the set {Lo(L q) = 
e) the inequality 11 &L,/aqj1>8; 3) the dissipative forces are such that QT.q’< - B(t) a(II q’ll) 

for t E I&, b, + vl. 
Then (4.2) is unstable. 
The proofs of Theorems 4.4 and 4.5 follow from (4.3)-(4.5) and Theorems 3.4 and 3-s. 

Remark. Theorems 4.&4.5can be extended to the case of dissipative forces with Partial 

dissipation. For instance, Theorem 4.2 remains val.id if the following conditions are satis- 
fied instead of 2) and 3): 2) Qr.q.<-a~g'!k) and 3) there are no solutions of any limit 
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system (4.2) in the set (gl'==g;=...=fjk*=O) except q'=q=O. 
The theorems proved generalize the reSdtS for aUtOnOmOUs /ll, 16-18/and non-autonomous 

/3, 14/ mechanical systems obtained by using several Liapunov functions. 

5. Consider the problem of synthesizing the control moment assuring the asymptotic stabil- 
ity of a given triaxial orientation of a solid with variable moments of inertia. 

Let @l&c be the inertial, and Ozgs the rigidly connected coordinate systems of a sol.id 

body. The rotational mction of the body can be described by the Euler dynamical equations 

(16$-t- 0 x lo=== M, 0 = fo,, 011, %), M = W,, M,, n?r,) (5.1) 

(Z(t)is the inertia tensor in the 0s~~ axes, defined by a bounded, positive-definite matrix) 

and the kinematic equations in Rodrigue-Hamilton parameters /19/ 

2X = A 0 0, A = (h,, k, h,, n,) (5.2) 

When the bases Ol&c and Oxyz coincide, we have A = (1,0,0, 0). 
The problem of synthesizing the control moment assuring uniform asymptotic stability of 

the equilibrium position o = 0, A = (1, O,O,O) is solved in the form 

M= - R ($1 ,-&XT = P-1, J-t,, $4, a> 0 (5.3) 

Here R(t) is a bounded matrix selected from the condition that 2R(t)+I'(t) is a posi- 

tive-definite matrix. 
The function V = 01~1" (2) 0 + 2a ((1 - h,)$ f Ala f a*a + W) 

is positive-definite, allows infinitesimal high limits, and has a derivative v'= --oT(2R +I') 

o<-~,cu~(!~~>O). because of (5.1)-(5.3). The limit equations to f5.1) and (S-3), solved for 
o, will have the form 

w' = {roTA, (t) @ + {o*B, (t)} - aC, (f)x 

where {oTA,o),{~TBw) are quadratic and linear forms in ox, %, o*,det(f C,I)> y >O. The equilibrium 
position o=O, A = (ii,O,O,O) are the unique solutions of these equations and (5.2) in the 

set (ox= oy= ez=O). Hence, on the basis of Theorem 3.3, any motion of the body under the 
influence of the control (5.3) will approach unboundedly to one of the equilibrium positions 
0=O,A= (+I, 0, 0, O).Theproblemofsynthesizingthemomentassuringuniformas~toticstabilityof 

the position o=O,,h=(&i,O,O, 0), thereby extending the results of /20/ to a body with variable 
moments of inertia, can also be solved by a method analogous to that given here. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

a. 

9. 

10. 
11. 
12. 

13. 

14. 
15. 

The author is grateful to V.V. Rumiantsev for his interest and for discussing the results. 

REFERENCES 

ARTSTEIN Z., Topological dynamics of an ordinary differential equation, J. Different. Equat., 
~01.23, No.2, 1977. 

ANDREEV A.S., On the asymptotic stability and instability o‘f non-autonomous systems. PMM, 
Vo1.43, No.5, 1979. 

ROUCHE N., ABETS P. and LALOIS M., Direct Liapunov Method in Stability Theory /Russian 
translation/, Mir, Moscow, 1980. 

LA SALLE J.P., Some extensions of Liapunov's second method. IRE Trans. Circuit Theory, 
Vo1.7, No.4, 1960. 

LA SALLE J.P., Stability theory for ordinary differential equations. Y. Different. Equat., 
~01.4, No.1, 1968. 

LA SALLE J.P., Stability theory and invariance principles. Dynamical Systems, Proc. Internat. 
sympos. Brown Univ., 1974. 211-22, Academic Press, New York, 1975. 
ROUCHE N., The invariance principle applied to non-compact limit set, Boll. Unione Mat. 
Ital, Vol.11, No.3, 1975. 

ARTSTEIN Z., Uniform asymptotic stability via the limiting equations. J. Different. Equat., 
Vo1.27, N0.2, 1978. 

ARTSTEIN Z., The limiting equations of non-autonomous ordinary differential equations, 3. 
Different. Equat., Vo1.25, N0.2, 1977. 

LIAPUNOV A.M., General Problem on Stability of Motion, Gostekhisdat, Moscow-Leningrad,1950. 
CHETAEV N.G., Stability of Motion, Gostekhisdat, Moscow, 1955. 
MARACHKOV V.P., On a stability theorem, Izv. Fix.-Matem. Ob-va i Nauchno-Issled. Inst. 
Matem. Mekhan., Kazan. Univ., Vol.12, Ser.3, 1940. 
RRASOVSKII N.N., Certain Problems of the Theory of Stability of Motion, Fizmatgiz, MOSCOW~ 
1959. 

~TROSOV V.M., 
MATROSOV V.M., 

On the stability of motion, PM&, Vo1.26, No.5, 1962. 
Development of the Liapunov funftion method in stability theory, Trudy 11 

Vsesoiuz. S'ezda po Teor. Prikl. Mekhanike, No.1, NAUKA, Moscow, 1965. 



160 

16. 

17. 

18. 

19. 

20. 

PMM 

AMINOV M.Sh., Certain questions of motion and stability of a solid of varaible mass, 
Trudy Kazan: Aviats. In-ta, No.48, 1959. 
SALVADOR1 L., Sull' eStenSiOne ai sistemi dissipative de1 criteria di stabilita dei Roiith, 
Richexche Mat., Vo1.15, No.2, 1966. 

icOZLOV V.V., Instability of equilibrium in a potential field taking viscous friction 
force into account, PMM, Vo1.45, No.3, 1981. 

BWETS V.N. and SBMYGLEVSKII I.P., Application of Quaternions in Problems of Solid Body 
Orientation, Nauka, Moscow, 1973. 

LEBEDEV D.V., On control of the triaxial orientation of a solid when there are constraints 
on the control parameter, PMM, Vol.45, No.3, 1981. 

Translated by M.D.F. 

U.S.S.R.,Vo1.48,No.2,pp.160-164,1984 
_. _ 

Printed in Great Britain 
CD21-8928/84 $lO.OO+O.OO 

01985 Pergamon Press Ltd. 

THE NOTION OF A HEAVY SY~ETRI~AL BODY WITH FLEXIBLE RODS 
ABOUT A FIXED POINT * 

V.G. VIL'KE 

The motion of a symmetrical solid about its centre of mass is considered 
in the case, when four mutually orthogonal flexible rods are fixed to it 
in the equatorial plane of the body ellipsoid of inertia. The deformations 
of rods is defined by the linear theory of the bending of thin viscoelastic 
rods, and lead to the evolution of the motion of the solid, i.e. the solid 
approaches steady rotation about the vertical. the approximate equations 
in Andoyer variables that define the system evolution are obtained by the 
method of averaging. The stability of the steady rotations obtained is 
investigated. 

The stability of steady rotations of a solid with a single fixed point and with flexible 
rods attached to it was investigated in /l, 2/. It was shown in /3/ that the longitudinal 
deformations of elastic rods fixed toaheavy symmetrical solid rotating about a fixed point 
results in the body approaching a steady rotation about the vertical axis. In that paper an 
approximate equation was also obtained, which defined the evolution of motion in terms of the 
Andoyer variables by the method of averaging. 

Let AI = &# CI, where (AI, &, Cl are the principal central maments of inertia of the 
solid about the point 0 (the centre of mass of the body), and let two paris of elastic rods 
be positioned along the principal axes of the ellipsoid of inertia 0x1 and oxa. Using the 
linear theory of the bending of thin rectilinear rods, we determine the radius vector of a 
point of the rod in the system of coordinates Ox~z,x, in the form 

The kinetic energy and angular momentum of the system are defined by the relations 

where a,(~, %, aa*) is the angular velocityof rotation of the body,Ji is the inertia tensor 

of the body, and p is the linear density of the rod material, which is assumed homogeneous. 

The angular velocity and the inertia tensor are considered in the moving system of coordinates 

OZl+Z,. 
The position of the moving coordinate system relative to the fixed system O~I!$& (the 

axis C& is vertical) is defined by Euler's angles. The generalized momenta and Routh's 

functional are defined by the relations 

*Prikl.Matem.Mekhan.,48,2,233-237,1984 


